
Syntax-Directed TranslationSyntax Directed Translation

1

Syntax-Directed Translation

1. Grammar symbols are associated with attributes to associate information with the
programming language constructs that they represent.

2. Values of these attributes are evaluated by the semantic rules associated with the
production rules.

3. Evaluation of these semantic rules:
– may generate intermediate codes

may put information into the symbol table– may put information into the symbol table
– may perform type checking
– may issue error messages
– may perform some other activitiesy p
– in fact, they may perform almost any activities.

4. An attribute may hold almost any thing.

2

– a string, a number, a memory location, a complex record.

Syntax-Directed Definitions and Translation Schemes

1. When we associate semantic rules with productions, we use two
notations:
– Syntax-Directed Definitions
– Translation Schemes

A. Syntax-Directed Definitions:
– give high-level specifications for translations
– hide many implementation details such as order of evaluation of semantic actions.
– We associate a production rule with a set of semantic actions, and we do not say when they

will be evaluated.

B. Translation Schemes:
– indicate the order of evaluation of semantic actions associated with a production rule.

In other words translation schemes give a little bit information about implementation

3

– In other words, translation schemes give a little bit information about implementation
details.

Syntax-Directed Definitions

1. A syntax-directed definition is a generalization of a context-free grammar in which:
– Each grammar symbol is associated with a set of attributes.
– This set of attributes for a grammar symbol is partitioned into two subsets called

• synthesized and
• inherited attributes of that grammar symbol.

h d i l i i d i h f i l– Each production rule is associated with a set of semantic rules.

2. Semantic rules set up dependencies between attributes which can be represented by a
d d hdependency graph.

3. This dependency graph determines the evaluation order of these semantic rules.

4. Evaluation of a semantic rule defines the value of an attribute. But a semantic rule
may also have some side effects such as printing a value.

4

y p g

Annotated Parse Tree

1. A parse tree showing the values of attributes at each node is called
an annotated parse tree.p

2. The process of computing the attributes values at the nodes is called
annotating (or decorating) of the parse tree.

3 Of course the order of these computations depends on the3. Of course, the order of these computations depends on the
dependency graph induced by the semantic rules.

5

Syntax-Directed Definition

In a syntax-directed definition, each production A→α is associated with a set of
semantic rules of the form:

b=f(c1,c2,…,cn)
where f is a function and b can be one of the followings:

b is a synthesized attribute of A and c1,c2,…,cn are attributes of the grammar
symbols in the production (A→α).

OR
b is an inherited attribute one of the grammar symbols in α (on the right side of

h d i) d ib f h b l i hthe production), and c1,c2,…,cn are attributes of the grammar symbols in the
production (A→α).

6

Attribute Grammar

• So, a semantic rule b=f(c1,c2,…,cn) indicates that the attribute b depends on attributes
c1,c2,…,cn.

• In a syntax-directed definition, a semantic rule may just evaluate a value of an
attribute or it may have some side effects such as printing values.

• An attribute grammar is a syntax-directed definition in which the functions in the
semantic rules cannot have side effects (they can only evaluate values of attributes).(y y)

7

Syntax-Directed Definition -- Example

Production Semantic Rules
L → E return print(E val)L → E return print(E.val)
E → E1 + T E.val = E1.val + T.val
E → T E.val = T.val
T T * F T l T l * F lT → T1 * F T.val = T1.val * F.val
T → F T.val = F.val
F → (E) F.val = E.val
F → digit F.val = digit.lexval

1 Symbols E T and F are associated with a synthesized attribute val1. Symbols E, T, and F are associated with a synthesized attribute val.
2. The token digit has a synthesized attribute lexval (it is assumed that it is evaluated by

the lexical analyzer).

8

Annotated Parse Tree -- Example

Input: 5+3*4 L

E.val=17 return

E.val=5 + T.val=12

T val=5 T val=3 * F val=4T.val=5 T.val=3 F.val=4

F.val=5 F.val=3 digit.lexval=4

digit.lexval=5 digit.lexval=3

9

Dependency Graph

Input: 5+3*4 L

E.val=17

E.val=5 T.val=12

T val=5 T val=3 F val=4T.val=5 T.val=3 F.val=4

F.val=5 F.val=3 digit.lexval=4

digit.lexval=5 digit.lexval=3

10

Syntax-Directed Definition – Example2

Production Semantic Rules
E → E1 + T E.loc=newtemp(), E.code = E1.code || T.code || add E1.loc,T.loc,E.loc1 p(), 1 || || 1 , ,
E → T E.loc = T.loc, E.code=T.code
T → T1 * F T.loc=newtemp(), T.code = T1.code || F.code || mult T1.loc,F.loc,T.loc
T → F T loc = F loc T code=F codeT → F T.loc = F.loc, T.code=F.code
F → (E) F.loc = E.loc, F.code=E.code
F → id F.loc = id.name, F.code=“”

1 S mbols E T and F are associated ith s nthesi ed attrib tes l and d1. Symbols E, T, and F are associated with synthesized attributes loc and code.
2. The token id has a synthesized attribute name (it is assumed that it is evaluated by the

lexical analyzer).
3 i d h || i h i i

11

3. It is assumed that || is the string concatenation operator.

Syntax-Directed Definition – Inherited Attributes

Production Semantic Rules
D → T L L in = T typeD → T L L.in = T.type
T → int T.type = integer
T → real T.type = realea .type ea
L → L1 id L1.in = L.in, addtype(id.entry,L.in)
L → id addtype(id.entry,L.in)

1. Symbol T is associated with a synthesized attribute type.

2. Symbol L is associated with an inherited attribute in.

12

A Dependency Graph – Inherited Attributes

Input: real p q

D L.in=real

T L T.type=real L1.in=real addtype(q,real)

real L id addtype(p,real) id.entry=q

id id tid id.entry=p

parse tree dependency graph

13

parse tree dependency graph

Syntax Trees

1. Decoupling Translation from Parsing-Trees.
2. Syntax-Tree: an intermediate representation of the compiler’s input.
3. Example Procedures:

mknode, mkleaf
4. Employment of the synthesized attribute nptr (pointer)p y y p (p)

PRODUCTION SEMANTIC RULE
E → E + T E nptr = mknode(“+” E nptr T nptr)E → E1 + T E.nptr = mknode(“+”,E1.nptr ,T.nptr)
E → E1 - T E.nptr = mknode(“-”,E1.nptr ,T.nptr)
E → T E.nptr = T.nptr
T → (E) T.nptr = E.nptr
T → id T.nptr = mkleaf(id, id.lexval)
T → num T.nptr = mkleaf(num, num.val)

14

p f(,)

Draw the Syntax Tree a-4+c

id

to entry for c

id num 4

15

to entry for a

Directed Acyclic Graphs for Expressions

a + a * (b – c) + (b – c) * d

+

+ *

*
-a

d
a

b c
16

b c

S-Attributed Definitions

1. Syntax-directed definitions are used to specify syntax-directed translations.

2 To create a translator for an arbitrar s nta directed definition can be diffic lt2. To create a translator for an arbitrary syntax-directed definition can be difficult.

3. We would like to evaluate the semantic rules during parsing (i.e. in a single pass, we will parse
and we will also evaluate semantic rules during the parsing).g p g)

4. We will look at two sub-classes of the syntax-directed definitions:
– S-Attributed Definitions: only synthesized attributes used in the syntax-directed

d fi i idefinitions.
– L-Attributed Definitions: in addition to synthesized attributes, we may also use inherited

attributes in a restricted fashion.

5. To implement S-Attributed Definitions and L-Attributed Definitions we can evaluate semantic
rules in a single pass during the parsing.

17

6. Implementations of S-attributed Definitions are a little bit easier than implementations of L-
Attributed Definitions

Bottom-Up Evaluation of S-Attributed Definitions

• We put the values of the synthesized attributes of the grammar symbols into a parallel
stack.
– When an entry of the parser stack holds a grammar symbol X (terminal or non-terminal),

the corresponding entry in the parallel stack will hold the synthesized attribute(s) of the
symbol X.

W l t th l f th tt ib t d i d ti• We evaluate the values of the attributes during reductions.

A → XYZ A.a=f(X.x,Y.y,Z.z) where all attributes are synthesized.

stack parallel-stack

top → Z Ztop →

top →

Z
Y
X

Z.z
Y.y
X.x A A.a

18

. . . .

Bottom-Up Eval. of S-Attributed Definitions (cont.)

Production Semantic Rules
L → E return print(val[top-1])p ([p])
E → E1 + T val[ntop] = val[top-2] + val[top]
E → T
T → T * F val[ntop] = val[top 2] * val[top]T → T1 * F val[ntop] = val[top-2] * val[top]
T → F
F → (E) val[ntop] = val[top-1]
F → digit

1. At each shift of digit, we also push digit.lexval into val-stack.
2. At all other shifts, we do not put anything into val-stack because other terminals do

not have attributes (but we increment the stack pointer for val-stack).

ntop = top – r + 1

19

ntop top r + 1

r = no. of symbols in the right side of the production

Canonical LR(0) Collection for The Grammar

L’→.L
L →.Er
E →.E+T

L’→L.
L →E.r

L →Er.
E →E+.T

E →E+T.
T →T.*F

I0: I1:

I2:

I7: I11:

I8:
r

L

E
T

F+

* 9

4E .E T
E →.T
T →.T*F
T →.F
F →.(E)

L E.r
E →E.+T

E →T.
T →T.*F

E E .T
T →.T*F
T →.F
F →.(E)
F →.d

2

I3:

8

T

(
d

6
5
4

F →.(E)
F →.d

T →T. F

T →F.
F → (E)

F →.d

T →T*.F
F → (E)

T →T*F.I4:

I :
I12:

I9: F
F

(

*

F → (.E)
E →.E+T
E →.T
T →.T*F
T F

F →.(E)
F →.d

F (E)

I5:

I :

E

(
(
d

)

6
5

T →.F
F →.(E)
F →.d

d

F →(E.)
E →E.+T

F →(E).
I

I10: I13:T

F
(

d

)
+3

5
4 8

20

F →d.I6: d
d

6
5

Bottom-Up Evaluation -- Example

• At each shift of digit, we also push digit.lexval into val-stack.
stack val-stack input action semantic rule
0 5+3*4 6 d l l(5) i t l t k0 5+3*4r s6 d.lexval(5) into val-stack
0d6 5 +3*4r F→d F.val=d.lexval – do nothing
0F4 5 +3*4r T→F T.val=F.val – do nothing
0T3 5 +3*4r E→T E.val=T.val – do nothingg
0E2 5 +3*4r s8 push empty slot into val-stack
0E2+8 5- 3*4r s6 d.lexval(3) into val-stack
0E2+8d6 5-3 *4r F→d F.val=d.lexval – do nothing
0E2+8F4 5 3 *4 T F T l F l d thi0E2+8F4 5-3 *4r T→F T.val=F.val – do nothing
0E2+8T11 5-3 *4r s9 push empty slot into val-stack
0E2+8T11*9 5-3- 4r s6 d.lexval(4) into val-stack
0E2+8T11*9d6 5-3-4 r F→d F.val=d.lexval – do nothing
0E2+8T11*9F12 5-3-4 r T→T*F T.val=T1.val*F.val
0E2+8T11 5-12 r E→E+T E.val=E1.val*T.val
0E2 17 r s7 push empty slot into val-stack
0E2r7 17 $ L→Er print(17) pop empty slot from val stack

21

0E2r7 17- $ L→Er print(17), pop empty slot from val-stack
0L1 17 $ acc

